Analysis 2
 30 April 2024

Depending on context, this could be any of
Warm-up: $\int \frac{1}{y} \mathrm{~d} y=$?

- $\ln y+C$
- $\ln |y|+C$
- $\ln y+g(x)$
- $\ln |y|+g(x)$
- In y, kind of

Vocabulary so far

Differential equation (diff. eq.) - an equation with a derivative in it. Ordinary differential equation (ODE) - for function with one input. Partial differential equation (PDE) - for function with multiple inputs.

Initial condition - info about function or derivative at a specific input. Initial value problem - a diff. eq. together with an initial condition.

First-order, second-order, etc. - highest derivative is $y^{\prime}, y^{\prime \prime}$, etc. (or $x^{\prime}, x^{\prime \prime}$, etc.).
Particular solution - does not have arbitrary constants (no " $+C$ ").
General solution - describes all possible solutions, ignoring any initial conditions.

Example: Solve the PDE $f_{x}^{\prime}=\frac{9}{2 x}, \quad f_{y}^{\prime}=\frac{1}{y}$.

Method A:

$$
f^{\prime} x \rightarrow f+g(y) \rightarrow f_{y}^{\prime}
$$

Match this with $f^{\prime} y$ from task to get g^{\prime}.

Method B:

$$
f_{y}^{\prime} \rightarrow f+g(x) \rightarrow f^{\prime} x
$$

Match this with $f^{\prime} x$ from task to get g'. $^{\prime}$.

$$
g^{\prime} \rightarrow g \rightarrow f
$$

Either way, the answer is $f=\frac{9}{2} \ln (x)+\ln (y)+C$, which can also be written as $f=\ln \left(x^{9 / 2} y\right)+C$.

Example: Solve the IVP $y^{\prime}(x)=x^{6}+e^{4 x}, \quad y(0)=3$.
First, find the general solution.

Then use the initial condition to find C.

Answer: $y=\frac{1}{7} x^{7}+\frac{1}{4} e^{4 x}+\frac{11}{4}$

Example 2: Solve the IVP $y^{\prime \prime}(t)=6 t+7, \quad y(0)=-8, \quad y^{\prime}(1)=12$. First, find the general solution.

Then use the initial conditions to find constants.

Answer: $y=t^{3}+\frac{7}{2} t^{2}+2 t-8$

Types of ODEs

There are many words we can use to classify differential equations. (We will learn these definitions later.)

- first-order, second-order, etc.
- directly integrable
- autonomous
- separable
- linear
- homogenous
- non-homogeneous
- constant coefficients

Some of these categories can overlap. For example, we could have a "homogeneous $2^{\text {nd-order }}$ linear ODE with constant coefficients".

Direct ODEs, Autonomous ODEs

A direct first-order ODE is one where the derivative equals a function of the input variable only. As a formula,

$$
\frac{d y}{d x}=f(x) \cdot \text { or } \frac{d y}{d t}=f(k) \text { or } x^{\prime}(t)=f(t)
$$

The explicit general solution to this is always found by integrating:

$$
y=\int f(x) \mathrm{d} x .
$$

Getting a nice formula for $\int f(x) \mathrm{d} x$ can be easy, difficult, or impossible, depending on f.

Direct ODEs, Autonomous ODEs

An autonomous first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(y) .
$$

Remember that we can use other letters. Therefore

- $y^{\prime}(x)=y^{3}$
- $y^{\prime}(t)=\frac{1}{y}$
- $\frac{\mathrm{d} x}{\mathrm{~d} t}=r x-r x^{2}$
- $x^{\prime}+x^{2}=0$
are all autonomous.

The particular solution to the IVP

$$
y^{\prime}(x)=2 y, \quad y(0)=6
$$

is...
A. $y(x)=x^{2}+6$
B. $y(x)=y^{2}+6$
C. $y(x)=6 x^{2}$
(D.) $y(x)=6 e^{2 x}$
E. $y(x)=e^{2 x}+5$
F. None of the above

You should be able to answer the previous multiple-choice question without knowing how to solve the autonomous ODE $y^{\prime}=2 y$.

- This kind of task can be on Quiz 4.
- Also Quiz 4: solving direct ODEs/IVPs (like $y^{\prime}=2 x$) and direct PDEs/IVPs.

Now we will see how to get from the ODE $y^{\prime}=2 y$ to the function $y=C e^{2 x}$.

Solving autonomous ODEs

$$
\left.\begin{array}{rl}
\text { Task: Solve } y^{\prime} & =2 y \cdot \frac{d y}{d x}
\end{array}=2 y\right] \begin{aligned}
\frac{1}{2 y} d y & =d x \\
\int \frac{1}{2 y} d y & =\int 1 d x \\
\text { implicit } \operatorname{soln} \rightarrow \quad \frac{1}{2} \ln (y) & =x+C \\
& \cdots \\
\text { explicit } \operatorname{soln} \rightarrow \quad y & =C e^{2 x}
\end{aligned}
$$

Comments:

- If may feel like cheating to split dy and $d x$ apart, but in's helpful.
- We don't need $\ln (y)+C_{1}$ $=a x+C_{2}$ because we could always subtract C_{1} from both sides to just have one constant.
- The C here is not the same C from before, but in both cases it means "any constant".

An explicit solution (often just called a solution) to a differential equation is a function that satisfies the ODE, either everywhere on an interval.

- Example: One explicit solution to the ODE

$$
y^{\prime}=3 y^{2}
$$

$$
\text { is } y=\frac{-1}{3 x} \text {. }
$$

An explicit solution (often just called a solution) to a differential equation is a function that satisfies the ODE, either everywhere on an interval.

- Example: One explicit solution to the ODE

$$
\begin{aligned}
& \qquad y^{\prime}=3 y^{2} \\
& \text { is } y=\frac{-1}{3 x} \text {. Another is } y=\frac{-1}{3 x+10} \text {. We can also say } y=\frac{-1}{3 x+C} \text { is } \\
& \text { an explicit solution (it is the "general explicit solution"). }
\end{aligned}
$$

An implicit solution is actually an equation that involves the output variable, satisfies the ODE, and does not include any derivatives.

- Example: $3 x y=-1$ is an implicit solution to $y^{\prime}=3 y^{2}$.
- Example: $3 x y+C y=-1$ is an implicit general solution to $y^{\prime}=3 y^{2}$.

Describe functions of y only that have $(?)^{\prime}=\frac{1}{y}$.

- Answer: $\ln (y)+C$
- This could be part of solving an autonomous ODE.
- Although it might be more helpful to just use $\ln (y)$ without the $+C$, as we saw in the previous example.

Describe functions of x and y that have $(?)_{y}^{\prime}=\frac{1}{y}$.

- Answer: $\ln (y)+g(x)$
- This could be part of solving a PDE.

Solving autonomous ODEs

Example: $y^{\prime}=\sqrt{y}$.
Note that solving $x^{\prime}=\sqrt{x}$ would be done exactly the same way, just with different letters.

$$
\begin{gathered}
x=\left(\frac{1}{2} t+C\right)^{2} \\
\text { But } y^{\prime}=\sqrt{x} \text { is very different. }
\end{gathered}
$$

Answer: $y=\left(\frac{1}{2} x+C\right)^{2}$
The step $\frac{1}{\sqrt{y}} \mathrm{~d} y=\mathrm{d} x$ is called "separation of variables".

Solving aukonomous ODEs

Task: $x^{\prime}=e^{3 x}$.

Implicit solution: $\frac{-1}{3} e^{-3 x}=t+C$
Explicit solution: $x=\frac{-1}{3} \ln (c-3 t)$
The step $e^{-3 x} \mathrm{~d} x=\mathrm{d} t$ is called "separation of variables".

Schedule

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
29 April Last Night of Passover	$\begin{aligned} & 30 \text { April } \\ & \text { (today) } \end{aligned}$					
Quiz 4 extra pt	Lecture	Problem Session Quiz 4	9	10	11	
13	Lecture	15 Problem Session	16	17	18 iz 5 extra poin	

