AMALYSES 2 30 April 2024

Warm-up: $\int_{v} \frac{1}{v} dy = ?$

Depending on context, this could be any of 0 Lny+C Olny+C olny+g(x) o lug + g(x) o lug, kind of

Differential equation (diff. eq.) – an equation with a derivative in it. Ordinary differential equation (ODE) – for function with one input. Partial differential equation (PDE) – for function with multiple inputs.

Initial condition – info about function or derivative at a specific input. Initial value problem – a diff. eq. together with an initial condition.

First-order, second-order, etc. – highest derivative is y', y'', etc. (or x', x'', etc.).

Particular solution – does not have arbitrary constants (no "+C"). General solution – describes all possible solutions, ignoring any initial conditions.

Example: Solve the PDE $f'_x = \frac{9}{2x}$, $f'_y = \frac{1}{v}$.

Method A:

 $f'_{\times} \rightarrow f_{\pm}g(y) \rightarrow f'_{y}$

Match this with f'y from task to get g'.

also be written as $f = ln(x^{9/2}y) + C$.

Method B: $f'_{y} \rightarrow f_{t}g(x) \rightarrow f'_{x}$ Malch this with f'x from lask to get q' $c ' \rightarrow c \rightarrow f$ Either way, the answer is $f = \frac{2}{2}\ln(x) + \ln(y) + C$, which can

Example: Solve the IVP $y'(x) = x^6 + e^{4x}$, y(0) = 3. First, find the general solution.

Then use the initial condition to find C.

Answer: $y = \frac{1}{7}x^7 + \frac{1}{4}e^{4x} + \frac{11}{4}$

Example 2: Solve the IVP y''(t) = 6t + 7, y(0) = -8, y'(1) = 12. First, find the general solution.

Then use the initial conditions to find constants.

Answer: $y = \frac{12}{2} + \frac{7}{2} + 2t - 8$

There are many words we can use to classify differential equations. (We will learn these definitions later.)

- first-order, second-order, etc.
- directly integrable 0
- autonomous 0
- separable 0

Some of these categories can overlap. For example, we could have a "homogeneous 2nd-order linear ODE with constant coefficients".

- Iinear
- homogenous 0
- non-homogeneous 0
- constant coefficients 0

A direct first-order ODE is one where the derivative equals a function of the input variable only. As a formula,

The explicit general solution to this is always found by integrating:

Getting a nice formula for $\int f(x) dx$ can be easy, difficult, or impossible, depending on f.

Some textbooks use the phrase "separable in x" or "directly integrable".

$$f(x) \cdot \operatorname{or} \frac{dy}{dt} = f(t) \operatorname{or} x'(t) = f(t)$$

- $y = \int f(x) \, \mathrm{d}x.$

An autonomous first-order ODE for y(x) can be written in the form $\frac{\mathrm{d}y}{\mathrm{d}x} = g(y).$

Remember that we can use other letters. Therefore

- $y'(x) = y^3$ $y'(t) = \frac{1}{v}$
- $\frac{\mathrm{d}x}{\mathrm{d}t} = rx rx^2$
- $x' + x^2 = 0$

are all autonomous.

The particular solution to the IVP y'(x) =

is... A. $y(x) = x^2 + 6$ B. $y(x) = y^2 + 6$ C. $y(x) = 6x^2$ D.) $y(x) = 6e^{2x}$ E. $y(x) = e^{2x} + 5$ None of the above F.

knowing how to solve the autonomous ODE y' = 2y.

- This kind of task can be on Quiz 4.

Now we will see how to get from the ODE y' = 2y to the function $y = Ce^{2x}$. • The task "Solve y' = 2y" could be part of Quiz 5, but not Quiz 4.

You should be able to answer the previous multiple-choice question without

Also Quiz 4: solving direct ODEs/IVPs (like y' = 2x) and direct PDEs/IVPs.

 $\frac{dy}{dx} = 2y$ $\frac{1}{dy} = dx$ $\frac{1}{2y}$ Task: Solve y' = 2y.

implicit soln \rightarrow

explicit soln -

 $\int \frac{1}{2y} dy = \int 1 dx$

 $\frac{1}{s}Ln(y) = x + C$

۵ 🍓 🐞

y = ce²x

Comments:

- o It may feel like cheating to split dy and dx apart, but it's helpful. o we don't need ln(y) + C1
 - = ax + C2 because we could always subtract C1 from both sides to just have one constant.
- o The C here is not the same C from before, but in both cases it means "any constant".

function that satisfies the ODE, either everywhere on an interval. Sector Example: One explicit solution to the ODE

 $is y = \frac{-1}{3x}$.

An explicit solution (often just called a solution) to a differential equation is a

 $y' = 3y^2$

An explicit solution (often just called a solution) to a differential equation is a function that satisfies the ODE, either everywhere on an interval. Sector Example: One explicit solution to the ODE

> is $y = \frac{-1}{3r}$. Another is $y = \frac{-1}{3r+10}$. We can also say $y = \frac{-1}{3r+C}$ is an explicit solution (it is the "general explicit solution").

satisfies the ODE, and does not include any derivatives.

• Example: 3xy = -1 is an implicit solution to $y' = 3y^2$.

- $v' = 3v^2$

- An implicit solution is actually an *equation* that involves the output variable,
 - Example: 3xy + Cy = -1 is an implicit general solution to $y' = 3y^2$.

Describe functions of y only that have $(?)' = \frac{1}{v}$.

- Answer: Ln(y) + C
- This could be part of solving an autonomous ODE. 0
 - 0 saw in the previous example.

Describe functions of x and y that have $(?)'_y = \frac{1}{y}$.

Answer: ln(y) + g(x)

This could be part of solving a PDE. 0

Although it might be more helpful to just use $\ln(y)$ without the +C, as we

Example: $y' = \sqrt{y}$.

Answer: $y = (\frac{1}{2}x + C)^2$

The step $\frac{1}{\sqrt{y}} dy = dx$ is called "separation of variables".

Note that solving $x' = \sqrt{x}$ would be done exactly the same way, just with different Leffers.

But y'= 1/x is very different.

 $x = (\frac{1}{2}e + C)^2$

Solving automous obes

Task: $x' = e^{3x}$.

Implicit solution: $\frac{-1}{2}e^{-3x} = t + C$ Explicit solution: $x = \frac{-1}{2}ln(c - 3b)$ The step $e^{-3x} dx = dt$ is called "separation of variables".

Monday	Tuesday	Wednesday
29 April	30 April	1 May
☆ Last Night of Passover	(today)	Labour Day
6	7	8
Quiz 4 extra pt	Lecture	Problem Session Quiz 4
13	14	15
	Lecture	Problem Session

